If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x=196
We move all terms to the left:
x^2+x-(196)=0
a = 1; b = 1; c = -196;
Δ = b2-4ac
Δ = 12-4·1·(-196)
Δ = 785
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{785}}{2*1}=\frac{-1-\sqrt{785}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{785}}{2*1}=\frac{-1+\sqrt{785}}{2} $
| G=8/7(p-64) | | (5/3a)=-35 | | -4x+1=5x-2 | | 2x+14+3x+18=180 | | 12d−10d=4 | | n-47=-19 | | 5(2+6m)=-170 | | 4(y-8)=6 | | -5x=-2x+16 | | 6x-6(5x+7)=198 | | -6/5x+2/5=-7/2x-3 | | 5(x+9)=135 | | 6/16=a/4 | | -5x=3x=32 | | 3x+12=x-7 | | 5n+2n=7 | | 2(1+5r)=62 | | 113=208-w | | 3x^2=-11x+20 | | (X+5)+(x-4)=90 | | 6n+4=46 | | -u+165=117 | | |5x-1|+3=12 | | 3(n+9)=3 | | -4y+3+3y-4=-3 | | 2x+300=6 | | -w+12=188 | | 5e+(-12)=38 | | -4x-3(x+16)=-111 | | 7/8x=84 | | 7x+15=52 | | -2p+7=-5-7p+6 |